Andrew Atkinson

Phone: (206) 724-1142

Email: Andrew@theatkinsons.org

Composite Optimization

My Master's thesis is in the field of computational structural optimization, focusing on carbon fiber laminates manufactured via automated fiber placement. Using Optistruct (a commercial software suite built upon NASTRAN), a design space is evaluated using finite element methods, and plies are generated to handle the design load.

Then, a bit of Python I wrote adapts these optimized plies to both meet mechanical specifications, maintain a definition of "optimal", and while account for the unique manufacturing challenges of Automated Fiber Placement.

My demonstration part is a flat panel with the window cutout of a Boeing 787 in the middle of it. This panel is fixed at one end, and loaded with a 100kN force. Once the traditional composite optimization process is carried out using these boundary conditions, my algorithm is applied to adapt the plies for manufacturing, while minimizing the discrepancies between actual and ideal ply-structures.

The result of this optimization is further analyzed using custom MAMS-lab developed ABAQUS codes. Preliminary analysis shows approximately 2x the strength of the optimized panel, compared to equivalent weight "black aluminum" panels. This will be manufactured for validation as the first project of the University of Washington's brand new Advanced Composite Center.

Ultrasonic Processing

Before returning to graduate school, I spent 4.5 years at Electroimpact designing bespoke manufacturing equipment for the aerospace industry. My primary duty was acting as the resident ultrasonic cutting process specialist.

In this role, I was responsible for:

  • Bidding and managing projects.

  • Investigating and quantifying the parameters which govern the cutting process.

  • Designing and manufacturing hardware to meet project specifications.

    • Custom end-effectors for gantry and robot motion platforms

    • 4-axis ply cutting tables

    • Integrated gantries on ATL end-effectors.

  • Inventing new processes and techniques to allow novel capabilities and increased production rates.

    • Developed and demonstrated a system for cutting beveled laminates using a 4-axis motion platform rather than 6.

    • Introduced modular cutting stacks, allowing knife geometry to be changed automatically mid-program, as well as swapping to welding or metrology operations.


Machine Design

In addition to my ultrasonic cutting role I was responsible for a variety of mechanical designs over the years. Some of the highlights include:

  • The tooling rotator shown in the video here.

  • Transfer stands for a variety of end-effectors.

  • Integrating KSL sewing machines to interface with existing robot motion platform and head transfer system.

  • Modifying 16-tow AFP heads for use with only the middle 8 tows for increased maneuverability.


Motorsport

My undergraduate senior project was competing in the 2015 Shell Eco-Marathon. This was a 6km fuel efficiency race around the streets of downtown Detroit. Our custom built, one-seat, three-wheel car placed first in the alternative fuel division. Running on pure ethanol, we achieved 842mpg on our best attempt.

My role on the 5-person team was Systems Engineer. This entailed:

  • Converting the carbureted, 1 cylinder, engine to fuel injection.

  • Wiring the car to run this new system and its increased electrical requirements.

  • Tuning the engine for maximum efficiency.

  • Troubleshooting what seemed like every issue a wheeled vehicle could have.

Rocket Payloads

Throughout my undergraduate degree I worked in the Colorado SpaceGrant Consortium lab at the University of Colorado. While here, designed and machined the mechanical structure for two rocket payloads. Both were sponsored by the Air Force Research Laboratory to investigate crystallization processes in micro gravity.

The first, in 2013, evaluated the differences in sodium acetate trihydrate crystalizing out of aqueous solution. These tanks were filmed while in space, and the crystalization dynamics were analyzed, as well as direct analysis of the samples after splashdown.

The second, in 2015, used induction heating to create an aluminum-indium alloy. While their atomic structures should allow these elements to create an alloy, their dramatically different densities lead to issues with buoyant separation when manufactured on earth. To evaluate the performance of this metal, a small sample was generated during micro gravity, and its structure compared to samples generated on the surface.